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Abstract: Rapid urbanization has caused a reduction in green lands, negatively affecting the functions
of ecosystem services (ESs). The 11th goal and other goals of the United Nations Sustainable
Development Goals (SDGs) have highlighted the importance of the balanced development of cities
and the environment. ESs are essential for human well-being, so their application in sustainable
development study is indispensable. The ecological security pattern (ESP) provides an integrated
strategy for maintaining a balance between a sustainable supply of ESs and urbanization. However,
establishing an ESP with the goal of satisfying human requirements for ESs in a rapidly urbanizing
area has not been well studied. Thus, it is necessary to build an ESP based on ecosystem service value
(ESV) reconstruction to manage urban ecosystems sustainably. Based on land use data and field data,
this study approached the research gap by related analyses. The first analysis involved dynamic
reconstruction of ESVs using the static ESV and importance indices of ESs from 1999–2013. The second
analysis involved using hot spot analysis (Getis-Ord Gi * statistics) to distinguish heterogeneous units
of the dynamic ESV to identify ecological sources. The third analysis involved establishing the ESP
in Zhuhai city, using the minimum cumulative resistance (MCR) model. The results indicated that
the ESV of Zhuhai city displayed an upward trend. The functions of water conservation and waste
treatment contributed most to the total ESV, while grain production and raw material contributed
least in the study area. In the restructuring of ESVs in 2005, 2009, and 2013, the per unit area of
the ESV decreased slightly. The areas with high ESVs continued to shrink, while the areas with
low ESVs gradually expanded. The ESP of Zhuhai city exhibits great connectivity and strong
plasticity, which specifically provides a reliable and visual way to build sustainable cities from a
quantitative perspective, generally consistent with the urban ecological planning of Zhuhai city.
This study provides an important reference for the application of ESs to achieve SDGs in coastal,
rapidly urbanizing regions.

Keywords: dynamic reconstruction; ecosystem services value; minimum cumulative resistance
model; ecological security pattern; land use change direction model; Sustainable Development Goals

1. Introduction

The 2030 Agenda on Sustainable Development was adopted by the United Nations General
Assembly in 2015, which aims to achieve sustainable development by collectively considering the
economic, social, and environmental dimensions through Sustainable Development Goals (SDGs) [1].
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Among the SDGs, the 9th goal, the 11th goal, and the 12th goal respectively emphasize the economic
development model, the planning of human habitation, and the rational use of resources in urban
areas. Additional goals have also emphasized the need to maintain a balance between human activities
and ecosystems in order to achieve a sustainable state [2]. With the adoption of SDGs, building
ecological security patterns and mitigating adverse impacts on the environment have inevitably
become a concern. Cities are compound “nature-economy-society” ecosystems that are established
by remodeling and adapting the environment with the development of human society. Urbanization
plays a crucial role in the sustainable development of the economy, the environment, and society [3–5].
Currently, the urbanization process is accelerating globally. It is estimated that by 2030, there will be
43 megacities in the world, each with a population of more than 10 million, most of which will be
in developing countries [6]. In China, the urbanization rate has continued with an average annual
increase of 1% for the past four decades [7]. Though urbanization has led to economic development
and improved the quality of life, it has also had negative consequences, such as overcrowding,
reductions in arable land, air pollution, and biodiversity loss [8,9]. Coastal regions are the natural
transitional zones between terrestrial and marine ecosystems. Many studies on coastal areas have
confirmed the vulnerability of coastal ecosystems [10–13]. Urbanization in coastal regions exerts
negative impacts on coastline ecology [14]. In the process of rapid urbanization in China, coastal areas
have become the center of human activity in recent years, and play an important role in supporting
economic growth [15,16]. Despite the considerable economic benefits, the area of green lands in cities
able to efficiently provide ecosystem services has sharply declined, and the abnormal functioning of
ecosystem services has gradually threatened urban ecological security [17]. How to reduce the impact of
urbanization on the ecological environment, maintain ecological security, and guarantee the sustainable
development of cities have become important issues for urban sustainable management [18–20].

Ecological security is the ecosystem including the environment and human health, basic rights,
resources, and the ability to adapt to environmental changes [21]. The ecological security pattern (ESP)
refers to an ecology framework to interact ecosystems with land use, architecture, and urban design [22].
ESP focuses on the sustainable development of the ecosystem services function, which is the pattern
formed by landscape elements, locations, and spatial relations such as nodes, corridors, and patches,
all of which are vital to the security and health of ecological processes [23–25]. The establishment of an
ESP is an effective measure for ameliorating the functions of ecosystems, ensuring the stable output of
ecosystem services (ESs), and safeguarding ecological security [26]. The study of ESPs occurs at the
global, national, and regional scales, among which the regional scale is important for protecting and
restoring biodiversity; maintaining the integrity of ecosystem processes, structure, and functions; and
effectively controlling and correcting problems in urbanizing areas [27]. Since cities are the regional
units with the most intensive human activities and the most drastic land use changes on the earth’s
surface, ESP establishment in cities has been an issue of great concern. Therefore, studying the integrity
and stability of key local ecosystems, determining the connectivity of landscape patches, and deeply
analyzing the sustainability of ecological services and the regional landscape’s resistance and resilience
to disruption by establishing an ESP [28–30] are of great significance for realizing an effective analysis
of a specific ecological process. In addition, these analyses help guarantee the sustainability of urban
ES. However, in the existing literature, most of the studies on building ESPs to enhance landscape
connectivity of vegetation is concentrated in areas with good ecological foundation and rarely in areas
with rapid urbanization [31], which may lead to an insufficient understanding of ecological problems
in specific regions.

Currently, the methods for establishing ESPs mainly center around the minimal cumulative
resistance (MCR) model [32]. This model can well simulate the inhibitory effect of a landscape on
the spatial motion process. Compared with traditional conceptual models and mathematical models,
the MCR can better express the interactive relationships between landscape patterns and ecological
processes [33]. This model is applied based on the following three steps: (1) identify ecological sources;
(2) construct a resistance surface; and (3) establish the security pattern [18,24,28,34]. Among these
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steps, the identification of ecological sources is the basis by which an ESP is established. Ecosystem
services are the ecological characteristics, functions, or processes that directly or indirectly contribute to
human well-being [35]. Since the ecosystem supports the clarification of such services, both ecological
and socio-economic aspects can be well weighed when evaluating urban areas [36]. Therefore,
the importance of ecosystem services is commonly adopted as the basis for identifying ecological
sources [37,38]. However, there are some limitations when assessing the importance of ESs based on
the ecosystem service value (ESV). The equivalence factor approach adopted as part of this method
usually offers only a static assessment and ignores the temporal and spatial changes in the nature and
quality of the ecosystem. However, ecosystem service functions are subject to regulation by a series of
ecological mechanisms, showing the spatiotemporal dynamic changes closely related to ecological
structure and processes. Therefore, since static assessment cannot reflect the temporally and spatially
dynamic conditions of ESs in the ecosystem, its impact regarding the guidance of future regional
environmental protection and ecosystem management is weak [39], which is not conducive to the
accurate identification of ecological sources. Additionally, the estimation and analysis of the ESV must
be based on marginal analysis and should be linked with changes in the total number of ESs instead
of just the total number [40]. If we regard different ES types as equally important to human welfare,
we will pay increasingly less attention to the ES types with a faster loss of value [41]. Thus, dynamic
correction and an importance index are introduced in this research to reflect changes in various ES
types changes in order to correct the original method. Meanwhile, ESs do not function alone but
depend on dynamic and continuous spatial processes and are influenced by spatial agglomeration [42].
Hence, based on the usage of the importance index, this paper visualizes estimation results for the ESV
through ArcGIS and conducts an analysis based on urban land utilization characteristics. Through
these analyses, this paper realizes the objective of scientifically identifying ecological sources.

Zhuhai city is the research object of this paper. Zhuhai city is a transitional zone between
terrestrial and marine ecosystems. It possesses a great ecological foundation and urban construction
background. While experiencing rapid urbanization and economic growth in the past several decades,
Zhuhai city has also protected the ecology of its coastal region. The significant changes in the natural
landscape have turned this city into an ideal place for examining ecological services. In this research,
we analyzed the impact of land use changes on the ecosystem by estimating the static ESV of Zhuhai
city. Adopting the importance indices of ESs, the paper dynamically revised the ESV of Zhuhai city in
2005, 2009, and 2013 and visualized the revision results. Based on the reconstructed ESV results in
2013, the paper selected potential ecological sources, adopted an MCR model to identify ecological
corridors, and established the ESP of Zhuhai city. Then, based on the above research results and
guided by the United Nations SDGs, the paper discusses the problems that arise during the process
of achieving sustainable urban development in Zhuhai city and puts forward planning suggestions.
Finally, this paper provides a research paradigm for promoting sustainable development during coastal
urbanization by studying ESs.

2. Materials and Methods

2.1. Study Area

Zhuhai city is located in southern Guangdong Province, China, between 21◦48′–22◦27′ N and
113◦03′–114◦19′ E and has a land area of 1736.46 km2 (Figure 1). It is the only city that is simultaneously
connected to Hong Kong and Macao. It is also one of the earliest special economic zones in China
to implement the Reform and Opening Up policy [43]. Zhuhai city has three administrative regions
under the jurisdiction of Xiangzhou District, Doumen District, and Jinwan District, and has established
five economic functional zones, including Hengqin, Hi-tech, and Bonded. It has a transitional
monsoon and maritime climate and is located between the southern subtropical zone and the tropical
zone. Accompanied by abundant rainfall, a humid climate, and a sufficient sunshine duration, the
temperature in Zhuhai city is relatively high throughout the year. The landforms of Zhuhai city are
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dominated by low mountains and hills, and the terrain slopes from northwest to southeast. Considered
one of “China’s Top Ten Livable Cities” and a “National Ecological Demonstration Zone,” Zhuhai city
has a top-notch urban landscape. Its regional gross domestic product (GDP) was 291.474 billion yuan
in 2018, with a resident population of 1.891 million and an urbanization rate of 90.08%.
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2.2. Data Collection

The land use data with a spatial resolution of 30 m for Zhuhai city used in this study from 1999,
2005, 2009, and 2013 were derived from the US satellite Landsat TM/ETM+, and the row number
was 122-44/45. We interpreted the remote sensing images through image interpretation and visual
interpretation combined with the regional environmental background. Then, ENVI 5.1 was used to
preprocess the images, including radiation correction, geometric correction, and frame cropping, and
the land use types were finally divided into 7 categories: forestland, grassland, farmland, wetland, bare
land, construction land, and water. Raster data were applied to establish the resistance surface including
a 25 m DEM, a population spatial distribution, and the normalized difference vegetation index (NDVI);
the vector data included river networks, which were all obtained from the website http://www.resdc.cn.
The social statistics came from the Guangdong Statistical Yearbook (http://www.nlc.cn).

2.3. Methods

2.3.1. Land Use Change Direction Model (LCDM) Model

The land use change direction model (LCDM) is calculated to initially assess the impact of land
use change on ecosystem functions. Its calculation results represent the direction of land use change in
the study area [44]. Ecosystem services value coefficients after dynamic modification of Zhuhai city
were obtained to calculate the weight of each land use type. The comprehensive ecological level of
land use type is represented by the weight value which can be referred [45]. The equation is as follows:

LCDM =

∑n
i=1

[
Ai j ×

(
D j −Di

)]
A

× 100% (1)

where LCDM is the value of the model; i is the i-th land use type; j is the j-th land use type transformed
from the i-th land type; Aij is the area of land use change from i-th to j-th; D is the ecological level of

http://www.resdc.cn
http://www.nlc.cn
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the land use types; A is the total conversion area of all land use types throughout the research area
during the study period.

When LCDM > 0, the conversion of land use is considered beneficial, and the higher the absolute
value of LCDM, the more ecosystem functions can be retained. When LCDM < 0, the conversion of
land use is considered to be more harmful, and the higher the absolute value of LCDM, the more
ecosystem functions will degrade [44].

2.3.2. Estimating the Static ESV

This study estimated the static ESV for four years in Zhuhai city by following the studies of
Costanza et al. [46] and Xie et al. [47]. According to the market price of cereals produced extracted
in the Guangdong Statistical Yearbook, the average ESV of one equivalent value for Zhuhai city was
1539.02 yuan/ha2 [48]. Bare land, construction land, and undefined land were all classified as other
types of land, which were calculated following the value coefficient of the wasteland in this study. The
formula is as follows:

ESVs,k,t = ak,t ×VCs,k,t (2)

ESVt = C×
∑

k

∑
s

ESVs,k,t (3)

where VCs,k,t refers to the per-hectare value coefficient of each ESs; k is the land use type; t is the study
time; s is supplied by each k and t; ak,t is the area of each k at time t; ESVt is the total ESV at time t;
C represents the value coefficient based on net primary productivity.

2.3.3. Reconstructing the ESV

The internal structure and external form of the ecosystem are constantly changing, so ESs have
dynamic characteristics [49]. Based on the theory of marginal utility in economics, estimating ESV
should be linked to changes in the total amount of ESs, not just the total value. Therefore, this study
dynamically reconstructed ESVs in 2005, 2009, and 2013 based on the results of static ESV in 1999 as
the benchmark.

In this study, the importance indices of ESs was used to adjust the value coefficient to revise the
static ESV in the time dimension. The formula is as follows:

βi =
vi

v
(4)

where βi is the importance index of each ESs; i refers to the 9 services included in the ESs; vi refers to
the average change rate of the i-th ES in the study years; and v is considered to be the average value of
vi throughout the study period.

In order to verify the rationality of the revised ESV, the coefficient of sensitivity (CS) was obtained
by Equation (5), and the estimated ESV sensitivity was analyzed from the calculation results [50]:

CS =

∣∣∣∣∣∣∣
(
ESV j − ESVi

)
/ESVi

(VC jk −VCik)/VCik

∣∣∣∣∣∣∣ (5)

where ESVi and VCik are the ESV and the value coefficients before adjustment, respectively, and ESVj
and VCik are the ESV and value coefficients the adjustment of the land-use types, respectively.

In spatial dimension, each ES is not only affected by the rate of value change, but also has a certain
difference between its spatial aggregation degree [49]. The revised ESV estimation results can be
visualized in a built 0.5 km × 0.5 km grid by using ArcGIS 10.4. The ecosystem service value evaluation
formula after dynamic reconstruction is as follows:

ESVk =
∑n

i=1
(Aik × βiVCi) (6)
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where ESVk refers to the total value of the ecosystem service in the k-th grid; Aik represents the area of
the i-th land use type in the k-th grid (unit:ha2) ; βi is the importance index of the i-th ES; VCi represents
the ESV coefficient of the i-th land use type.

2.3.4. Establishing the ESP

In order to build ESP that can serve the sustainable development of Zhuhai city. A three-step
method with the MCR model as the core was adopted in this study. The equation of the MCR model is
as follows [51]:

MCR = fmin

∑i=m

j=n
Di j·Ri (7)

where f represents a function reflecting the positive correlation between the minimum resistance of any
point in space and its spatial distance to all sources and features of the landscape base; Dij represents
the spatial distance between the influence of any human disturbance at its source j to any spatially
explicit grid unit i in the landscape; and Ri is the resistance at grid unit i in terms of the influence of
human disturbance.

(1) Identifying the ecological sources

The ecological source is land with important ES functions that play a decisive role in the regional
ecological process and function [52]. We applied hot spot analysis (Getis-Ord Gi *) tool [53] in ArcGIS
10.4 to extract the hot spot-90% confidence districts in the dynamic reconstructed ESV in 2013 of Zhuhai
city, then combined the surface runoff to identify patches where the two coincide as an alternative
area for ecological sources. At the same time, the forestland in 2013 was selected and combined with
the alternative areas mentioned above. According to the area characteristics of Zhuhai city, patches
that could effectively isolate the outside from interfering with the core area and maintain ecological
stability [36] were selected as the ecological source for constructing the ecological security model.

(2) Constructing the resistance surface

The resistance surface as the core of establishing an ESP determines the resistance needed to
be overcome and the cost consumption when the ecological source is spread out. The selection of
resistance factors and the delineation of resistance levels are the key to the constructing of resistance
surfaces. Considering the actual situation in Zhuhai city, we selected six resistance factors: land use
type, altitude, slope, population, vegetation coverage, and distance from water. All resistance factors
were divided into four levels according to relevant references, the higher the level, the greater the
resistance [27,54–57]. The weight of each resistance factor was determined by analytical hierarchy
process (AHP) [58] (Table 1).

Table 1. The level and weight of resistance factor.

Resistance
Factor

Unit
Level of Resistance Weight

1st Level 2nd Level 3rd Level 4th Level

Land Use Type
Water
bodies,

forestland

Wetland,
grassland Farmland

Bare land,
construction

land
0.30

Altitude m <125 125–250 250–375 >375 0.05
Slope <7 7–15 15–25 >25 0.10

Population <1743 1743–3486 3486–5229 >5229 0.20
Vegetation
Coverage >0.70 0.55–0.70 0.40–0.55 <0.40 0.20

Distance from
Water m <500 500–1000 1000–1500 >1500 0.15
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(3) Identifying the ecological corridors

Ecological corridor is the efficient access for the exchange of materials and energy between
ecological sources, which can enhance the connectivity of the ecosystem and effectively improve the
regional ecological security and ecological carrying capacity [31]. On the resistance surface, the path of
least resistance cost linking ecological sources is identified as the ecological corridor. The ecological
node is a key point of controlling the conventional ecological connection between ecological sources.
Ecological corridors were constructed based on the MCR model in this study [59], and determined
ecological nodes based on the intersection point of the minimum cost path that controls the ecological
flow in the ecological resistance surface model [60,61].

The methodological framework of this study is visually shown in Figure 2.
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3. Results

3.1. Directional Change in Land Use

The analysis of the directional change in land use demonstrated that construction land,
farmland, forestland, and water areas have changed obviously. Since 1999, forestland, water areas,
and construction land increased slightly, which clearly affected the changes in ecosystem function.
Therefore, it is necessary to calculate LCDM to assess the influence of land use changes on ESs.
The LCDM value was obtained by Equation (1) and was shown as follows: LCDM1999–2005 = 1.78%,
LCDM2005-2009 = −1.65%, LCDM2009-2013 = 0.26%, and LCDM1999-2013 = 0.40%. The results indicated
that the LCDM value increased from 1999 to 2013, implying that changes in land use had beneficial
impacts on the ESs in the study area since 1999. These data also preliminarily confirmed that dynamic
ESV reconstruction is an effective base for building ESPs in this study area.

3.2. Estimation of the Static ESV

During 1999–2005, the ESV showed an upward trend, with an increase of 11.97%. Then a general
decline followed in the ESV; the value decreased by 10.00% between 2005 and 2009. The period between
2009 and 2013 showed a slight increase in the ESV, reaching 3.70%.

The ESV was mainly composed of regulating services, including gas regulation, climate regulation,
water conservation, waste treatment and soil formation, and erosion control. Among these services,
water conservation accounted for the largest proportion of the total ESV in Zhuhai city. The proportions
of production services, including grain production and raw material, were relatively low compared
with those in other regions. From 1999–2013, the values of water conservation, waste treatment,
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biodiversity conservation, and entertainment culture services all increased; the water conservation
service value increased the most, up to 16.96%. However, the value of production services and other
regulating services declined by more than 2.56%. (Table 2).

Table 2. Ecosystem service value (ESV) in Zhuhai city in 1999, 2005, 2009, and 2013 (108 yuan).

Year G.P. R.M. G.R. C.R. W.C. W.T. S.F.E.C. B.C. E.C. Total

1999 1.40 2.34 3.78 5.90 14.33 11.60 4.21 5.92 4.29 53.74
2005 1.18 2.29 3.63 5.73 17.93 14.12 3.83 6.33 5.14 60.17
2009 1.16 2.12 3.36 5.24 15.76 12.51 3.62 5.80 4.58 54.15
2013 0.92 2.28 3.48 4.94 16.76 12.82 3.55 6.08 4.90 55.73

Ecosystem service (ES) names in the table: Grain production (G.P.), Raw material (R.M.), Gas regulation (G.R.),
Climate regulation (C.R.), Water conservation (W.C.), Waste treatment (W.T.), Soil formation and erosion control
(S.F.E.C.), Biodiversity conservation (B.C.), Entertainment culture (E.C.).

3.3. Dynamic Reconstruction of the ESV

3.3.1. Dynamic Revision of the ESV Coefficient

The importance indices of ESs were used to adjust the value coefficient to revise the static ESV in
each given period of time, which was directly related to the degree of change in each ES (Figure 3).
From 1999 to 2005, the importance indices of water conservation, waste treatment, and entertainment
culture services were relatively high, all of which were above 1.5 (Table 3), while the importance indices
of raw materials, gas regulation, and climate regulation services were low, less than 0.4. There were no
significant differences among the importance indices of grain production, biodiversity conservation,
and soil formation and erosion control services. From 1999 to 2009, the importance index of the grain
production service was the highest, reaching 1.74. However, the importance index of the biodiversity
conservation service was the lowest, at only 0.2. Other ESs had similar importance indices. From 1999
to 2013, the importance index of grain production service reached 2.55, while that of raw material was
only 0.18. The importance indices of climate regulation, water conservation, soil formation and erosion
control, and entertainment culture services were all above 1; in contrast, the others were lower.
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Table 3. Importance indices of ecosystem services in Zhuhai city.

Year G.P. R.M. G.R. C.R. W.C. W.T. S.F.E.C. B.C. E.C.

2005 1.28 0.20 0.34 0.24 2.11 1.83 0.75 0.58 1.67
2009 1.74 0.95 1.12 1.11 1.01 0.79 1.39 0.20 0.69
2013 2.55 0.18 0.58 1.21 1.26 0.78 1.17 0.21 1.06

ES names in the table: Grain production (G.P.), Raw material (R.M.), Gas regulation (G.R.), Climate regulation
(C.R.), Water conservation (W.C.), Waste treatment (W.T.), Soil formation and erosion control (S.F.E.C.), Biodiversity
conservation (B.C.), Entertainment culture (E.C.).
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Results presented in the sensitivity coefficient table (Table 4) illustrated that the revised ESV was
inelastic relative to the value coefficient. The coefficient of sensitivity (CS) was less than 1, which meant
that the correction result was reasonable.

Table 4. Results of the sensitivity coefficient.

Land Use Forestland Grassland Farmland Wetland Water Others

2005 0.20 0.01 0.03 0.03 0.72 0.01
2009 0.33 0.01 0.05 0.03 0.56 0.01
2013 0.28 0.02 0.05 0.04 0.63 0.02

3.3.2. Reconstruction of the ESV

This study reconstructed the ESV of Zhuhai city with the importance indices of ESs and the
spatial grid. Dynamic reconstruction of ESVs can help assess the ecological level of the study area.
By analyzing the spatial-temporal changes in ESVs, the ability of land to provide ecological services
can be investigated. Figure 4 shows the distribution of reconstructed ESV results in Zhuhai city from
2005 to 2013. We found that the overall trends were similar to those for the static ESV.

From 2005–2009, the dynamic ESV significantly decreased from 2.56–1198.00 × 104 yuan/km2

to 0.20–774.00 × 104 yuan/km2. The downtown areas of Zhuhai city, located in the middle of the
Xiangzhou District, showed a gradual expansion of low-ESV areas, which was closely related to urban
construction during this period.

From 2009–2013, the dynamic ESV rose slightly to 0.52–847.40 × 104 yuan/km2. The area of the
intermediate-ESV regions increased, although the area of the high-ESV region in the Jinwan District
and northern Xiangzhou District continued to shrink.
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From 2005–2013, overall, the dynamic ESV showed a downward trend. Spatially, the high-ESV
areas were mainly concentrated in the Jinwan District in the south of Zhuhai city, followed by the
Doumen District in the north and Xiangzhou District. In addition, the reconstructed areas with a
high ESV overlapped more with surface runoff and were mainly distributed in areas with sufficient
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water systems. Specifically, the Xiangzhou District was the region in which high-tech industries and
economic functional zones in Zhuhai city were concentrated, and the degree of urban construction was
relatively high. In this area, the destruction of green land by urban construction resulted in a great loss
of ESs. However, the larger forest patches were less affected by urban development, and there was no
significant change in the ESV per unit area or patch area.

3.4. Establishment of the ESP

3.4.1. Identifying the Ecological Sources

The spatiotemporal distribution of ecological source patches was identified by using Getis-Ord Gi *
in ArcGIS software (Figure 5). Identification of ecological sources helps us investigate the sustainability
of the ESP more effectively.

The area of ecological sources accounted for 22.53% of the total study area in 2013. Among these
ecological sources, forestland patches were mainly distributed in the middle of the Doumen District
and to the north of the Xiangzhou District, which confirmed that the output of ecological services
is stable by the results of dynamic reconstruction of the ESV. Wetland patches with surface runoff

flow-through were mainly distributed on the boundary of the Jinwan District. Adding these wetland
patches to the ecological source can improve the connectivity of greenland.
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3.4.2. Constructing the Resistance Surface

The resistance values in the study area are shown in Figure 5. The resistance values of the
6 resistance factors were highly consistent in terms of spatial distribution. These values were higher in
the middle of the Xiangzhou District. The resistance value of each 0.5 × 0.5 km grid on the resistance
surface, calculated from the resistance factors, was 0.45 to 3.55. The residential areas had the highest
resistance value, which was mainly distributed in the middle of the Xiangzhou District and on the edge
of the mountain in the Doumen District. The area of minimum resistance was distributed between the
junction of the Xiangzhou District and the Jinwan District and the southern part of the Jinwan District,
whereas the distribution of resistance values in other areas was relatively uniform.

3.4.3. Identifying the Ecological Corridors

Building and regulation of ecological corridors and ecological nodes are the keys to redeveloping
the ESP. Based on a cost path model, we first constructed a network of least resistance paths connecting
ecological source patches and then selected ecological corridors and nodes. Ecological corridors were
categorized into two levels that represented the different functions as shown in Figure 6. In this ESP,
first-level ecological corridors were the shortest paths in the network of paths connecting various
ecological sources. Second-level ecological corridors were the auxiliary paths of the first-level corridors,
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which aimed to promote the circulation of biological information and materials to the remote ends of
adjacent patches. The first-level ecological nodes were set at the intersections of ecological corridors,
and the second-level nodes were set at the intersections of first-level and second-level corridors.
The highest-level urban construction and the most densely populated area between the ecological
sources was in the north and the south of the Xiangzhou District, where the most resistance to
constructing the corridors in Zhuhai city occurred.
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4. Discussion

4.1. Spatial-Temporal Characteristics of ESs

To explore the ecological situation of Zhuhai city, the spatial-temporal characteristics of ESs
in Zhuhai city were determined from multiple angles through calculation of LCDM models and
reconstruction of the ESV. From the temporal perspective, the whole ESV fluctuated greatly during
the study period, indicating that urban managers should pay more attention to the protection and
restoration of ecosystem function. For example, the value of the dynamically reconstructed ESV in 2005
was the highest in the whole study area. This result corresponded to the adjustment of government
development strategies before 2005 that replaced the sole reliance on policies of “expanding the
industrial scale” with the development strategy of low ecological environment loss, such as policies
of “rejuvenating the city with science and education” and “functional zone driving.” At the same
time, urban expansion was also transformed by the reshaping of old villages in the city. The trough
of the ESV occurred in 2009, and recovery occurred in 2013, which corresponded to a change in
urban planning strategy from “modernized central city” to “new garden city.” Different urbanization
processes determine land use patterns, which in turn affect the function of ESs.

In terms of spatial dimension, we evaluated the spatial distribution of the static ESV and dynamic
ESV. The results showed that the areas with high values were mainly located in the middle and western
regions, where forests and wetlands were distributed, and these kinds of areas constantly increased
from 1999 to 2013. The relatively weak areas were mainly located near the downtown and eastern
areas. The value showed an obvious downward trend. The areas of ecological sources in Zhuhai
city remained stable throughout the whole study period; the proportion of this type of area slightly
increased, which was attributed to local environmental protection.

4.2. Advantages of Establishing an ESP Based on Dynamic Reconstruction of the ESV

To establish a more effective ESP, this study dynamically reconstructed the ESV and identified
ecological sources by Getis-Ord Gi *. The ecological corridors and nodes were extracted as key data,
as they are the important links in the urban ESP. The results showed that the ESP could be established
effectively by these means.
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The connectivity of ecological sources is very important for maintaining the stability of ecosystem
functions. Forest patches were stable in Zhuhai city, but the patches were far from one another with
poor overall connectivity. This leads to barriers in information exchange and many obstacles when
building corridors between them. The selection of ecological sources based on the results of dynamic
reconstruction of the ESV in this research can effectively help overcome the difficulties in selecting
ecological sources in Zhuhai city, thus enabling the function per unit area of ESs to be expressed more
accurately in terms of value and location. In addition, the introduction of the importance index can
highlight land use patches with more drastic changes in ESVs in the study period. While providing a
high service value, these patches also have higher plasticity and can more quickly adapt to the changes
in urban development. The selected patches have exactly made up for defects in the long distance
between forest patches as ecological sources in Zhuhai city contributed to the building of corridor
networks and strengthened the overall connectivity of ecological sources of Zhuhai city. Thus, the
ecological sources that were selected based on the dynamic reconstruction of ESVs have not only
satisfied the demand of ecosystem functions but also improved the distribution of sources from the
systematic and dynamic perspectives, fully guaranteeing the subsequent construction of the ESP.

4.3. Implications for Urban Planning and Sustainable Development

Urbanization is highlighted in the United Nations SDGs. The question of how to balance the
relationship between urban sprawl and environmental conservation was always worried by urban
managers. Although some solutions, such as building ESPs, were provided by many studies, some
imperfections still exist. For instance, some studies did not take into account the influences of
dynamic ESVs. In this study, based on the results of the reconstructed ESV and ESP in Zhuhai city,
we provide reasonable suggestions for sustainable development. The following section provides
detailed suggestions on ecological safety.

In terms of sustainable production models that SDGs focuses on and based on the estimation
results of static ESVs among the ESs provided by the current land use model in Zhuhai city, the two
production-related services have a relatively low value; therefore, it is inappropriate for the primary
industry to serve as the economic pillar. The contribution of water conservation service to ecosystems
is rather prominent. Meanwhile, the water conservation service also possesses the ability to dispose of
a large amount of waste. Therefore, Zhuhai city is more inclined to develop toward a new type of city
that takes the secondary and tertiary industries as main economic pillars. This economic development
direction exactly responds to the call for technological innovation in the SDGs. The growth of
biodiversity conservation and entertainment culture by a small margin may become the wind vane that
steers Zhuhai city toward an ecological tourism city. However, from the perspective of the increase
and decrease in various ESs, the values of regulation services other than water conservation, such
as gas and climate regulation and soil formation and erosion control, have displayed a downward
trend. An alarm for the land use model of Zhuhai city should be sounded, as the ecosystem will not
be able to regulate itself during the process of urban development in the future, which may lead to
environmental damage that can hardly be restored.

Furthermore, the SDGs also emphasize the balanced development of society and ecosystems,
such as constructing sustainable infrastructure to strengthen the city’s ability to respond to
environmental changes. According to the spatial-temporal results for ecological safety in the study
area, Zhuhai city mainly exhibited a continuous reduction in high-ESV areas and a decline in ESV.
High-ESV areas are mostly identified as ecological sources. Therefore, on the basis of protecting the
ecological source, we recommend that Zhuhai city strengthen the construction of ecological corridors
while paying attention to the ecological state of ecological nodes. Given the nature of Zhuhai city as
a special economic zone, economic development and ecological construction are equally important,
and its resource utilization efficiency for ecological construction should be improved. Accordingly,
ecological corridors and nodes can be constructed based on local conditions. The edge of forest natural
reserves, or green belts, on the coast or riverbank can serve as ecological corridors to strengthen the
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ecological functions of the green barriers among city groups. Ecological nodes can also be planned as
parks for urban residents’ recreational activities. This way, while enhancing the connectivity of the
ecosystem and maintaining ecological security, it also increases the citizens wellbeing in terms of social
functions. Linking the ecological network with the network of public services and mobility is expected
to improve the resilience of the urban ecological network and the resulting benefits on the quality
of life of citizens. The vulnerability of ecological conditions can be effectively protected by this ESP,
and environmental problems such as reductions in urban green space can be effectively slowed in the
study area. Instead of urban sprawl, improving the utility of the landscape through the construction of
green infrastructure within the city, should be a driver for sustainable development.

Since 2013, the urbanization process of Zhuhai city has gradually slowed down, and the
government has attached importance to protect green space through planning. The urban pattern of
Zhuhai city has roughly formed a scale. We will compare the ESP constructed in this article with the
current ESP in Zhuhai city in the later study.

5. Conclusions

The ESP is very important for the sustainable development of cities and the stable supply of ESs is
the basis for selecting ecological sources; thus, research on dynamic reconstruction of ESVs and how to
identify ecological sources provides a new integrated approach for establishing the ESP under rapid
urbanization. As demonstrated by this study in Zhuhai city, importance indices of ESs and a spatial
grid with a unit area of 0.25 km were used to reconstruct the ESV, and ecological sources were identified
using the dynamic ESV and Getis-Ord Gi *. Then, the ESP was established based on the dynamically
restructured ESV while providing a novel and comprehensive evaluation system for the realization of
SDGs. It also establishes a sustainable development paradigm in coastal, rapidly urbanizing areas.

The estimated results for the static ESV demonstrated that the overall ecosystem service function
of the study area showed an upward trend. Among the ESVs reconstructed in 2005, 2009, and 2013,
the value of ESV per unit area declined. The areas with a high ESV continued to shrink, while the areas
with a low ESV gradually expanded. The reconstructed areas with a high ESV overlapped most with
surface runoff, mostly wetlands. The ESV per unit area of forest patches fluctuated slightly, and the
area of these patches did not change significantly. Hence, the ecological function of the ecological
source composed of wetland patches and forestland patches was stable. That is, the ESP of Zhuhai
city was well connected and exhibited strong plasticity. The ESP adapts to local urban and ecological
construction and can benefit from the exchange of ecological elements.

Land use changes caused by urbanization are the fundamental aspects that affect the functioning of
ESs. Therefore, we believe that in the construction of coastal cities, it is essential to enhance the elasticity
of the urban ecological network while limiting the urban expansion. Furthermore, ecological corridors
should be designed to improve service delivery and reduce heterogeneity so that regions can obtain
ecosystem services more equitably. In the future, establishment of ESPs will guide urban construction
by integrating regional economic function and ecological function considerations. Our study can be
used for reference by more research in the rapid urbanization of coastal areas in the world. While
protecting the fragile ecosystem of coastal cities around the world, establishing ESPs based on ESV
reconstruction will become an effective means with which to complete the SDGs proposed by the
United Nations within a specified time.
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